Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Immunol ; 52(8): 1228-1242, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35491946

RESUMO

ICAP-1 regulates ß1-integrin activation and cell adhesion. Here, we used ICAP-1-null mice to study ICAP-1 potential involvement during immune cell development and function. Integrin α4ß1-dependent adhesion was comparable between ICAP-1-null and control thymocytes, but lack of ICAP-1 caused a defective single-positive (SP) CD8+ cell generation, thus, unveiling an ICAP-1 involvement in SP thymocyte development. ICAP-1 bears a nuclear localization signal and we found it displayed a strong nuclear distribution in thymocytes. Interestingly, there was a direct correlation between the lack of ICAP-1 and reduced levels in SP CD8+ thymocytes of Runx3, a transcription factor required for CD8+ thymocyte generation. In the spleen, ICAP-1 was found evenly distributed between cytoplasm and nuclear fractions, and ICAP-1-/- spleen T and B cells displayed upregulation of α4ß1-mediated adhesion, indicating that ICAP-1 negatively controls their attachment. Furthermore, CD3+ - and CD19+ -selected spleen cells from ICAP-1-null mice showed reduced proliferation in response to T- and B-cell stimuli, respectively. Finally, loss of ICAP-1 caused a remarkable decrease in marginal zone B- cell frequencies and a moderate increase in follicular B cells. Together, these data unravel an ICAP-1 involvement in the generation of SP CD8+ thymocytes and in the control of marginal zone B-cell numbers.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Linfócitos B , Linfócitos T CD8-Positivos , Ativação Linfocitária , Timócitos , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Linfócitos B/citologia , Linfócitos T CD8-Positivos/citologia , Diferenciação Celular , Integrina beta1/metabolismo , Camundongos , Camundongos Knockout , Baço/citologia , Timócitos/citologia , Timo/citologia
2.
J Pathol ; 252(1): 29-40, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32501543

RESUMO

The interaction of multiple myeloma (MM) cells with the bone marrow (BM) microenvironment promotes MM cell retention, survival, and resistance to different anti-MM agents, including proteasome inhibitors (PIs) such as bortezomib (BTZ). The α4ß1 integrin is a main adhesion receptor mediating MM cell-stroma interactions and MM cell survival, and its expression and function are downregulated by BTZ, leading to inhibition of cell adhesion-mediated drug resistance (CAM-DR) and MM cell apoptosis. Whether decreased α4ß1 expression and activity are maintained or recovered upon development of resistance to BTZ represents an important question, as a potential rescue of α4ß1 function could boost MM cell survival and disease progression. Using BTZ-resistant MM cells, we found that they not only rescue their α4ß1 expression, but its levels were higher than in parental cells. Increased α4ß1 expression in resistant cells correlated with enhanced α4ß1-mediated cell lodging in the BM, and with disease progression. BTZ-resistant MM cells displayed enhanced NF-κB pathway activation relative to parental counterparts, which contributed to upregulated α4 expression and to α4ß1-dependent MM cell adhesion. These data emphasize the upregulation of α4ß1 expression and function as a key event during resistance to BTZ in MM, which might indirectly contribute to stabilize this resistance, as stronger MM cell attachment to BM stroma will regain CAM-DR and MM cell growth and survival. Finally, we found a strong correlation between high ITGB1 (integrin ß1) expression in MM and poor progression-free survival (PFS) and overall survival (OS) during treatment of MM patients with BTZ and IMIDs, and combination of high ITGB1 levels and presence of the high-risk genetic factor amp1q causes low PFS and OS. These results unravel a novel prognostic value for ITGB1 in myeloma. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Antineoplásicos/administração & dosagem , Bortezomib/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Integrina alfa4beta1/metabolismo , Mieloma Múltiplo/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Integrina alfa4beta1/genética , Camundongos , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Microambiente Tumoral
3.
Cancer Res ; 79(9): 2244-2256, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30833419

RESUMO

Combined treatment of metastatic melanoma with BRAF and MEK inhibitors has improved survival, but the emergence of resistance represents an important clinical challenge. Targeting ERK is a suitable strategy currently being investigated in melanoma and other cancers. To anticipate possible resistance to ERK inhibitors (ERKi), we used SCH772984 (SCH) as a model ERKi to characterize resistance mechanisms in two BRAF V600E melanoma cell lines. The ERKi-resistant cells were also resistant to vemurafenib (VMF), trametinib (TMT), and combined treatment with either VMF and SCH or TMT and SCH. Resistance to SCH involved stimulation of the IGF1R-MEK5-Erk5 signaling pathway, which counteracted inhibition of Erk1/2 activation and cell growth. Inhibition of IGF1R with linsitinib blocked Erk5 activation in SCH-resistant cells and decreased their growth in 3D spheroid growth assays as well as in NOD scid gamma (NSG) mice. Cells doubly resistant to VMF and TMT or to VMF and SCH also exhibited downregulated Erk1/2 activation linked to stimulation of the IGF1R-MEK5-Erk5 pathway, which accounted for resistance. In addition, we found that the decreased Erk1/2 activation in SCH-resistant cells involved reduced expression and function of TGFα. These data reveal an escape signaling route that melanoma cells use to bypass Erk1/2 blockade during targeted melanoma treatment and offer several possible targets whose disruption may circumvent resistance. SIGNIFICANCE: Activation of the IGF1R-MEK5-Erk5 signaling pathway opposes pharmacologic inhibition of Erk1/2 in melanoma, leading to the reactivation of cell proliferation and acquired resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Indazóis/farmacologia , MAP Quinase Quinase 5/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melanoma/patologia , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Piperazinas/farmacologia , Receptor IGF Tipo 1/metabolismo , Animais , Apoptose , Biomarcadores Tumorais , Proliferação de Células , Feminino , Humanos , MAP Quinase Quinase 5/genética , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteína Quinase 7 Ativada por Mitógeno/genética , Receptor IGF Tipo 1/genética , Transdução de Sinais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Mol Biol Cell ; 26(18): 3215-28, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26202465

RESUMO

Stimulation by chemokines of integrin α4ß1-dependent T-lymphocyte adhesion is a crucial step for lymphocyte trafficking. The adaptor Vav1 is required for chemokine-activated T-cell adhesion mediated by α4ß1. Conceivably, proteins associating with Vav1 could potentially modulate this adhesion. Correlating with activation by the chemokine CXCL12 of T-lymphocyte attachment to α4ß1 ligands, a transient stimulation in the association of Vav1 with SLP-76, Pyk2, and ADAP was observed. Using T-cells depleted for SLP-76, ADAP, or Pyk2, or expressing Pyk2 kinase-inactive forms, we show that SLP-76 and ADAP stimulate chemokine-activated, α4ß1-mediated adhesion, whereas Pyk2 opposes T-cell attachment. While CXCL12-promoted generation of high-affinity α4ß1 is independent of SLP-76, ADAP, and Pyk2, the strength of α4ß1-VCAM-1 interaction and cell spreading on VCAM-1 are targets of regulation by these three proteins. GTPase assays, expression of activated or dominant-negative Rac1, or combined ADAP and Pyk2 silencing indicated that Rac1 activation by CXCL12 is a common mediator response in SLP-76-, ADAP-, and Pyk2-regulated cell adhesion involving α4ß1. Our data strongly suggest that chemokine-stimulated associations between Vav1, SLP-76, and ADAP facilitate Rac1 activation and α4ß1-mediated adhesion, whereas Pyk2 opposes this adhesion by limiting Rac1 activation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Quinase 2 de Adesão Focal/metabolismo , Integrina alfa4beta1/metabolismo , Fosfoproteínas/metabolismo , Linfócitos T/metabolismo , Adesão Celular/fisiologia , Linhagem Celular , Quimiocina CXCL12/metabolismo , Humanos , Células Jurkat , Ligantes , Transporte Proteico , Proteínas Proto-Oncogênicas c-vav/metabolismo , Transdução de Sinais , Linfócitos T/citologia , Molécula 1 de Adesão de Célula Vascular/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
5.
Cell Signal ; 26(11): 2551-61, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25025568

RESUMO

Activation of the GTPase RhoA linked to cell invasion can be tightly regulated following Gα13 stimulation. We have used a cellular model displaying Gα13-dependent inhibition of RhoA activation associated with defective cell invasion to the chemokine CXCL12 to characterize the molecular players regulating these processes. Using both RNAi transfection approaches and protein overexpression experiments here we show that the Src kinase Blk is involved in Gα13-activated tyrosine phosphorylation of p190RhoGAP, which causes RhoA inactivation and ultimately leads to deficient cell invasion. Characterization of molecular interplays between Gα13, Blk and p190RhoGAP revealed that Blk binds Gα13, and that Blk-mediated p190RhoGAP phosphorylation upon Gα13 activation correlates with weakening of Gα13-Blk association connected to increased Blk-p190RhoGAP assembly. These results place Blk upstream of the p190RhoGAP-RhoA pathway in Gα13-activated cells, overall representing an opposing signaling module during CXCL12-triggered invasion. In addition, analyses with Blk- or Gα13-knockdown cells indicated that Blk can also mediate CXCL12-triggered phosphorylation of p190RhoGAP independently of Gα13. However, even if CXCL12 induces the Blk-mediated GAP phosphorylation, the simultaneous stimulation of the guanine-nucleotide exchange factor Vav1 by the chemokine, as earlier reported, leads to a net increase in RhoA activation. Therefore, when Gα13 is concurrently stimulated with CXCL12 there appears to be sufficient Blk activity to promote adequate levels of p190RhoGAP tyrosine phosphorylation to inactivate RhoA and to impair cell invasiveness.


Assuntos
Quimiocina CXCL12/metabolismo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Proteínas Repressoras/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Quinases da Família src/metabolismo , Linhagem Celular Tumoral , Quimiocina CXCL12/genética , Ativação Enzimática/genética , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Invasividade Neoplásica , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patologia , Fosforilação/genética , Proteínas Repressoras/genética , Proteína rhoA de Ligação ao GTP/genética , Quinases da Família src/genética
6.
J Pathol ; 229(1): 36-48, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22711564

RESUMO

Myeloma cell adhesion dependent on α4ß1 integrin is crucial for the progression of multiple myeloma (MM). The α4ß1-dependent myeloma cell adhesion is up-regulated by the chemokine CXCL12, and pharmacological blockade of the CXCL12 receptor CXCR4 leads to defective myeloma cell homing to bone marrow (BM). Sphingosine-1-phosphate (S1P) regulates immune cell trafficking upon binding to G-protein-coupled receptors. Here we show that myeloma cells express S1P1, a receptor for S1P. We found that S1P up-regulated the α4ß1-mediated myeloma cell adhesion and transendothelial migration stimulated by CXCL12. S1P promoted generation of high-affinity α4ß1 that efficiently bound the α4ß1 ligand VCAM-1, a finding that was associated with S1P-triggered increase in talin-ß1 integrin association. Furthermore, S1P cooperated with CXCL12 for enhancement of α4ß1-dependent adhesion strengthening and spreading. CXCL12 and S1P activated the DOCK2-Rac1 pathway, which was required for stimulation of myeloma cell adhesion involving α4ß1. Moreover, in vivo analyses indicated that S1P contributes to optimizing the interactions of MM cells with the BM microvasculture and for their lodging inside the bone marrow. The regulation of α4ß1-dependent adhesion and migration of myeloma cells by CXCL12-S1P combined activities might have important consequences for myeloma disease progression.


Assuntos
Medula Óssea/metabolismo , Adesão Celular , Quimiocina CXCL12/metabolismo , Integrina alfa4beta1/metabolismo , Lisofosfolipídeos/metabolismo , Mieloma Múltiplo/metabolismo , Esfingosina/análogos & derivados , Células Estromais/metabolismo , Migração Transendotelial e Transepitelial , Animais , Medula Óssea/irrigação sanguínea , Medula Óssea/imunologia , Medula Óssea/patologia , Forma Celular , Técnicas de Cocultura , Proteínas Ativadoras de GTPase , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Integrina alfa5beta1/metabolismo , Células K562 , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mieloma Múltiplo/genética , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/patologia , Interferência de RNA , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/metabolismo , Transdução de Sinais , Esfingosina/metabolismo , Células Estromais/imunologia , Células Estromais/patologia , Talina/metabolismo , Fatores de Tempo , Transfecção , Células Tumorais Cultivadas , Molécula 1 de Adesão de Célula Vascular/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
7.
J Cell Sci ; 125(Pt 22): 5338-52, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22946047

RESUMO

Cell migration and invasion require regulated turnover of integrin-dependent adhesion complexes. Rap1-GTP-interacting adaptor molecule (RIAM) is an adaptor protein that mediates talin recruitment to the cell membrane, and whose depletion leads to defective melanoma cell migration and invasion. In this study, we investigated the potential involvement of RIAM in focal adhesion (FA) dynamics. RIAM-depleted melanoma and breast carcinoma cells displayed an increased number, size and stability of FAs, which accumulated centrally at the ventral cell surface, a phenotype caused by defective FA disassembly. Impairment in FA disassembly resulting from RIAM knockdown correlated with deficient integrin-dependent mitogen-activated protein kinase kinase (MEK)-Erk1/2 activation and, importantly, overexpression of constitutively active MEK resulted in rescue of FA disassembly and recovery of cell invasion. Furthermore, RIAM-promoted Ras homologue gene family, member A (RhoA) activation following integrin engagement was needed for subsequent Erk1/2 activation. In addition, RhoA overexpression partially rescued the FA phenotype in RIAM-depleted cells, also suggesting a functional role for RhoA downstream of RIAM, but upstream of Erk1/2. RIAM knockdown also led to enhanced phosphorylation of paxillin Tyr118 and Tyr31. However, expression of phosphomimetic and nonphosphorylatable mutants at these paxillin residues indicated that paxillin hyperphosphorylation is a subsequent consequence of the blockade of FA disassembly, but does not cause the FA phenotype. RIAM depletion also weakened the association between FA proteins, suggesting that it has important adaptor roles in the correct assembly of adhesion complexes. Our data suggest that integrin-triggered, RIAM-dependent MEK activation represents a key feedback event required for efficient FA disassembly, which could help explain the role of RIAM in cell migration and invasion.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adesões Focais/metabolismo , MAP Quinase Quinase 1/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas de Membrana/metabolismo , Animais , Linhagem Celular Tumoral , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Melanoma/enzimologia , Melanoma/patologia , Camundongos , Modelos Biológicos , Paxilina/metabolismo , Fosforilação , Fosfotirosina/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 12/metabolismo , Regulação para Cima , Proteína rhoA de Ligação ao GTP/metabolismo , Quinases da Família src/metabolismo
8.
J Immunol ; 187(3): 1264-72, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21705617

RESUMO

Chemokines rapidly and transiently upregulate α4ß1 and αLß2 integrin-mediated adhesion during T lymphocyte extravasation by activating Gα-dependent inside-out signaling. To limit and terminate Gα-mediated signaling, cells can use several mechanisms, including the action of regulator of G protein signaling (RGS) proteins, which accelerate the GTPase activity of Gα subunits. Using human T cells silenced for or overexpressing RGS10, we show in this article that RGS10 functions as an inhibitor of Gα(i)-dependent, chemokine-upregulated T cell adhesion mediated by α4ß1 and αLß2. Shear stress-dependent detachment and cell spreading analyses revealed that RGS10 action mainly targets the adhesion strengthening and spreading phases of α4ß1-mediated cell attachment. Associated with these observations, chemokine-stimulated Vav1-Rac1 activation was longer sustained and of higher intensity in RGS10-silenced T cells, or inhibited in cells overexpressing RGS10. Of importance, expression of constitutively activated Rac1 forms in cells overexpressing RGS10 led to the rescue of CXCL12-stimulated adhesion to VCAM-1 to levels similar to those in control transfectants. Instead, adhesion under flow conditions, soluble binding experiment, flow cytometry, and biochemical analyses revealed that the earlier chemokine-triggered integrin activation step was mostly independent of RGS10 actions. The data strongly suggest that RGS10 opposes activation by chemokines of the Vav1-Rac1 pathway in T cells, leading to repression of adhesion strengthening mediated by α4ß1. In addition to control chemokine-upregulated T cell attachment, RGS10 also limited adhesion-independent cell chemotaxis and activation of cdc42. These results identify RGS10 as a key molecule that contributes to the termination of Gα-dependent signaling during chemokine-activated α4ß1- and αLß2-dependent T cell adhesion.


Assuntos
Antígeno CD11a/fisiologia , Antígenos CD18/fisiologia , Quimiocinas/antagonistas & inibidores , Regulação para Baixo/imunologia , Integrina alfa4/fisiologia , Integrina beta1/fisiologia , Proteínas RGS/fisiologia , Linfócitos T/imunologia , Antígeno CD11a/metabolismo , Antígenos CD18/metabolismo , Adesão Celular/imunologia , Células Cultivadas , Quimiocinas/fisiologia , Quimiotaxia de Leucócito/imunologia , Humanos , Integrina alfa4/metabolismo , Integrina beta1/metabolismo , Células Jurkat , Transdução de Sinais/imunologia , Linfócitos T/citologia , Linfócitos T/metabolismo , Regulação para Cima/imunologia
9.
J Biol Chem ; 286(21): 18492-504, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21454517

RESUMO

The Mig-10/RIAM/lamellipodin (MRL) family member Rap1-GTP-interacting adaptor molecule (RIAM) interacts with active Rap1, a small GTPase that is frequently activated in tumors such as melanoma and prostate cancer. We show here that RIAM is expressed in metastatic human melanoma cells and that both RIAM and Rap1 are required for BLM melanoma cell invasion. RIAM silencing in melanoma cells led to inhibition of tumor growth and to delayed metastasis in a severe combined immunodeficiency xenograft model. Defective invasion of RIAM-silenced melanoma cells arose from impairment in persistent cell migration directionality, which was associated with deficient activation of a Vav2-RhoA-ROCK-myosin light chain pathway. Expression of constitutively active Vav2 and RhoA in cells depleted for RIAM partially rescued their invasion, indicating that Vav2 and RhoA mediate RIAM function. These results suggest that inhibition of cell invasion in RIAM-silenced melanoma cells is likely based on altered cell contractility and cell polarization. Furthermore, we show that RIAM depletion reduces ß1 integrin-dependent melanoma cell adhesion, which correlates with decreased activation of both Erk1/2 MAPK and phosphatidylinositol 3-kinase, two central molecules controlling cell growth and cell survival. In addition to causing inhibition of cell proliferation, RIAM silencing led to higher susceptibility to cell apoptosis. Together, these data suggest that defective activation of these kinases in RIAM-silenced cells could account for inhibition of melanoma cell growth and that RIAM might contribute to the dissemination of melanoma cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Movimento Celular , Melanoma/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Apoptose/genética , Adesão Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Inativação Gênica , Humanos , Integrina beta1/genética , Integrina beta1/metabolismo , Melanoma/genética , Melanoma/patologia , Proteínas de Membrana/genética , Camundongos , Camundongos SCID , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Invasividade Neoplásica , Metástase Neoplásica , Transplante de Neoplasias , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-vav/genética , Proteínas Proto-Oncogênicas c-vav/metabolismo , Transplante Heterólogo , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...